Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 257(Pt 2): 128749, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104686

RESUMO

Sunflower stem pith, an agricultural residue, was used as a starting material for the preparation of bio-based products. Sunflower stem pith nanocellulose (SSP-C) was prepared by sodium hydroxide/urea from the SSP cellulose. The prepared SSP-C was typical of cellulose II. To improve the adsorption capacity of the SSP-C, a bio-based aerogel (SSP-MH) with adsorbed methylene blue (MB) was prepared by compounding layered double hydroxides modified montmorillonite (MH) with SSP-C-based adsorbent, and the chemical characteristics and topology of the adsorbent were determined. The removal performance of SSP-MH in different MB concentrations was examined. Adsorption tests showed that hydrogels containing the same content of MH had higher removal efficiency. The removal rate of MB by SSP-MH was >87.5 % in MB solution (1 g/L), and its maximum adsorption capacity was 263.3 mg/g. The kinetics studies of MB removal were well by quasi-secondary adsorption kinetic model and Langmuir isotherm model. Moreover, the standard free Gibbs energy change of adsorption (ΔG0) was <0, which was favorable for adsorption of MB. The adsorption efficiency of SSP-MH on MB was still above 95 % by the five cycles of the adsorption/desorption experiment. The prepared samples were conducive to the high-value utilization of SSP.


Assuntos
Helianthus , Poluentes Químicos da Água , Celulose , Azul de Metileno/química , Bentonita/química , Poluentes Químicos da Água/química , Hidróxidos , Adsorção , Cinética , Água/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38157156

RESUMO

Xylooligosaccharides (XOS), as prebiotic oligomers, are increasingly receiving attention as high value-added products produced from lignocellulosic biomass. Although the XOS contains a series of different degrees of polymerization (DP) of xylose units, DP 2 and 3 (xylobiose (X2) and xylotriose (X3)) are regarded as the main active components in food and pharmaceutical fields. Therefore, in the study, in order to achieve the maximum production of XOS with the desired DP, a combination strategy of sequential auto-hydrolysis and xylanase hydrolysis was developed with corncob as raw material. The evidences showed that the hemicellulosic xylan could be effectively decomposed into various higher DP saccharides (> 4), which were dissolved into the auto-hydrolysate; sequentially, the soluble saccharides could be rapidly hydrolyzed into XOS with desired DP by xylanase hydrolysis. Finally, a maximum XOS yield of 56.3% was achieved and the ratio of (X2 + X3)/XOS was over 80%; meanwhile, the by-products could be controlled at lower levels. Overall, this study provides solid data that support the selective and precise preparation of XOS from corncob, vigorously promoting the application of XOS as functional sugar products.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38158487

RESUMO

Whey from cheesemaking is an environmental contaminant with a high biochemical oxygen demand (BOD), containing an abundance of lactose. Hence, it has the potential to be utilized in the manufacturing of bio-based chemicals that have increased value. A designed sequential fermentation approach was employed in this research to convert enzymatic hydrolysate of cheese whey (primarily consists of glucose and galactose) into gluconic acid and bio-ethanol. This conversion was achieved by utilizing Gluconobacter oxydans and Saccharomyces cerevisiae. Glucose in the enzyme hydrolysate will undergo preferential oxidation to gluconic acid as a result of the glucose effect from Gluconobacter oxydans. Subsequently, Saccharomyces cerevisiae will utilize the remaining galactose exclusively for ethanol fermentation, while the gluconic acid in the fermentation broth will be retained. As a result, approximately 290 g gluconic acid and 100 g ethanol could be produced from 1 kg of cheese whey powder. Simultaneously, it was feasible to collect a total of 140 g of blended protein, encompassing cheese whey protein and bacterial protein. Two-step fermentation has proven to be an effective method for utilizing cheese whey in a sustainable manner.

4.
Front Chem ; 11: 1233494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483269

RESUMO

The excessive use of fossil has resulted in the drastic exhaustion of natural energy sources, leading to environmental challenges and energy crises. Owing to rising energy demand there is a dire need to shift towards renewable energies from lignocellulosic biomass. The present study assessed the co-production of biohydrogen (H2) and biomethane (CH4) by utilizing a less explored halophyte Atriplexcrassifolia. Various reaction parameters were evaluated for their effect on biohydrogen and biomethane production in batch experiments. One parameter at a time experimental strategy was chosen for production optimization. Hydrogen and methane yields along with their production rates were assessed at different incubation times, temperatures, pH, substrate concentrations, and inoculum sizes in acidogenesis and methanogenesis stages, respectively. In the first stage, maximum cumulative hydrogen production of 66 ± 0.02 mL, with hydrogen yield of 13.2 ± 0.03 mL/g, and hydrogen production rate (HPR) of 1.37 ± 0.05 mL/h was attained when the reaction mixture (5 g Atriplexcrassifolia and 10 mL pretreated sewage sludge) was processed at 37°C and pH 5.5 after 48 h of incubation. While in the second stage, maximum cumulative methane production, i.e., 343 ± 0.12 mL, methane yield (MY) of 8.5 ± 0.07 mL/mL, and methane production rate (MPR) of 0.8 ± 0.05 mL/h was achieved after 18 days of incubation of reaction mixture (40 mL of hydrogenic slurry with 80 mL inoculum) at 45°C and pH 8. Furthermore, a 51% and 24% rise in biohydrogen and biomethane production respectively were recorded when the gases were produced at these optimized reaction conditions. The results ensure halophyte Atriplexcrassifolia as an imperative renewable energy resource and proposed that effective optimization of the process further increased the coproduction of biohydrogen and biomethane.

5.
Front Bioeng Biotechnol ; 11: 1160698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008025

RESUMO

Polyvinyl alcohol (PVA) hydrogels were enhanced mechanically through the addition of lignin-rich nanocellulose (LCN), soluble ash (SA) and montmorillonite (MMT) for dye removal. The hybrid hydrogels reinforced with 33.3 wt% of LCN had a 163.0% increase in storage modulus as compared to the PVA/0LCN-33.3SM hydrogel. LCN can be added to the PVA hydrogel to alter its rheological properties. Additionally, hybrid hydrogels were highly efficient in removing methylene blue from wastewater, which was attributed to the synergistic effects of the PVA matrix supporting embedded LCN, MMT, and SA. The adsorption time (0-90 min) showed that the hydrogels containing MMT and SA had high removal efficiency, and the adsorption of methylene blue (MB) by PVA/20LCN-13.3SM was greater than 95.7% at 30°C. It was found that MB efficiency decreased with a high MMT and SA content. Our study provided a new method for the fabrication of polymers-based eco-friendly, low-cost and robust physical hydrogels for the MB removal.

6.
Front Bioeng Biotechnol ; 11: 1135424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896009

RESUMO

Bioethanol is believed to be an influential revolutionary gift of biotechnology, owing to its elevating global demand and massive production. Pakistan is home to a rich diversity of halophytic flora, convertible into bounteous volumes of bioethanol. On the other hand, the accessibility to the cellulosic part of biomass is a major bottleneck in the successful application of biorefinery processes. The most common pre-treatment procedures existent include physicochemical and chemical approaches, which are not environmentally benign. To overcome these problems, biological pre-treatment has gained importance but the drawback is the low yield of the extracted monosaccharides. The current research was aimed at exploring the best pre-treatment method for the bioconversion of halophyte Atriplex crassifolia into saccharides using three thermostable cellulases. Atriplex crassifolia was subjected to acid, alkali and microwave pre-treatments, followed by compositional analysis of the pre-treated substrates. Maximum delignification i.e. 56.6% was observed in the substrate pre-treated using 3% HCl. Enzymatic saccharification using thermostable cellulases also validated the results where the highest saccharification yield i.e. 39.5% was observed for the sample pre-treated using same. Maximum enzymatic hydrolysis of 52.7% was obtained for 0.40 g of the pre-treated halophyte Atriplex crassifolia where Endo-1,4- ß -glucanase (300U), Exo-1,4- ß -glucanase (400U) and ß -1,4-glucosidase (1000U) were simultaneously added and incubated for 6 h at 75°C. The reducing sugar slurry obtained after optimization of saccharification was utilized as glucose in submerged fermentation for bioethanol production. The fermentation medium was inoculated with Saccharomyces cerevisiae, incubated at 30°C and 180 rpm for 96 h. Ethanol production was estimated using potassium dichromate method. Maximum production of bioethanol i.e. 16.33% was noted at 72 h. It can be concluded from the study that Atriplex crassifolia owing to its high cellulosic content after pre-treatment using dilute acid method, yields substantial amount of reducing sugars and high saccharification rates when subjected to enzymatic hydrolysis using thermostable cellulases, under optimized reaction conditions. Hence, the halophyte Atriplex crassifolia is a beneficial substrate that can be utilized to extract fermentable saccharides for bioethanol production.

7.
Bioresour Technol ; 369: 128464, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509308

RESUMO

In this study, a renewable organic acid (xylonic acid), which can be prepared by the biooxidation of xylose, is used for pretreating sugarcane bagasse. The effects of reaction temperature and time on the release of fermentable xylose and glucose were investigated. On the basis of guaranteeing the good enzymatic hydrolysis efficiency and minimizing the effects of inhibitors, the pretreatment with 1 % xylnoic acid at 190 °C for 30 min was selected after optimization. In this case, 70 % xylose was released, while enzymatic hydrolysis yield was also up to 86.5 %. Meanwhile, the pretreated hydrolysate liquor was proved that it could be used for producing xylonate by biooxidation of Gluconobacter oxydans. Finally, the sequential process of the xylonic acid pretreatment and saccharification also clear the path for recycling the lignin as value-added bioproducts. Overall, this study presents a green-like strategy for fully exploiting sugarcane bagasse.


Assuntos
Celulose , Saccharum , Xilose , Açúcares , Hidrólise
8.
Front Nutr ; 9: 1030685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324624

RESUMO

Since the immune-boosting properties as well as the benefit of promoting the growth of gut bacteria, xylooligosaccharides as prebiotics have attracted considerable interest as functional feed additives around the world. A growing number of studies suggest that acidic hydrolysis is the most cost-effective method for treating xylan materials to prepare xylooligosaccharides, and organic acids were proved to be more preferable. Therefore, in this study, glutamic acid, as an edible and nutritive organic acid, was employed as a catalyst for hydrolyzing xylan materials to prepare xylooligosaccharides. Further, xylooligosaccharide yields were optimized using the response surface methodology with central composite designs. Through the response surface methodology, 28.2 g/L xylooligosaccharides with the desirable degree of polymerization (2-4) at a yield of 40.5 % could be achieved using 4.5% glutamic acid at 163°C for 41 min. Overall, the application of glutamic acid as a catalyst could be a potentially cost-effective method for producing xylooligosaccharides.

9.
Front Microbiol ; 13: 951707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35942315

RESUMO

Bacteria acts as the main decomposer during the process of biodegradation by microbial communities in the ecosystem. Numerous studies have revealed the bacterial succession patterns during carcass decomposition in the terrestrial setting. The machine learning algorithm-generated models based on such temporal succession patterns have been developed for the postmortem interval (PMI) estimation. However, the bacterial succession that occurs on decomposing carcasses in the aquatic environment is poorly understood. In the forensic practice, the postmortem submersion interval (PMSI), which approximately equals to the PMI in most of the common drowning cases, has long been problematic to determine. In the present study, bacterial successions in the epinecrotic biofilm samples collected from the decomposing swine cadavers submerged in water were analyzed by sequencing the variable region 4 (V4) of 16S rDNA. The succession patterns between the repeated experimental settings were repeatable. Using the machine learning algorithm for establishing random forest (RF) models, the microbial community succession patterns in the epinecrotic biofilm samples taken during the 56-day winter trial and 21-day summer trial were determined to be used as the PMSI predictors with the mean absolute error (MAE) of 17.87 ± 2.48 ADD (≈1.3 day) and 20.59 ± 4.89 ADD (≈0.7 day), respectively. Significant differences were observed between the seasons and between the substrates. The data presented in this research suggested that the influences of the environmental factors and the aquatic bacterioplankton on succession patterns of the biofilm bacteria were of great significance. The related mechanisms of such influence need to be further studied and clarified in depth to consider epinecrotic biofilm as a reliable predictor in the forensic investigations.

10.
Front Bioeng Biotechnol ; 10: 937838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845396

RESUMO

The sustainability and economic viability of the bioethanol production process from lignocellulosic biomass depend on efficient and effective pretreatment of biomass. Traditional pretreatment strategies implicating the use of mineral acids, alkalis, and organic solvents release toxic effluents and the formation of inhibitory compounds posing detrimental effects on the environment and interfering with the enzymatic saccharification process, respectively. Ionic liquids (ILs) as green solvents were used to overcome this issue, but the deep eutectic solvent as an emerging class of ionic liquids performed better in terms of making the process environmentally and economically viable. The green solvent-based pretreatment strategy applied in the current research was levulinic, acid-based natural deep eutectic solvent (NADES). Three different hydrogen bond acceptors (HBAs)-acetamide, betaine, and choline chloride-in combination with levulinic acid as hydrogen bond donor (HBD) in (HBD: HBA) molar ratio 2:1, were screened for biomass pretreatment. The best deep eutectic solvent was levulinic acid: choline chloride in an optimized molar ratio of 1:0.5, resulting in 91% delignification. The physicochemical parametric optimization of saccharification exhibited maximum enzymatic hydrolysis of 25.87% with 125 mg of pretreated sawdust via simultaneous addition of three thermostable cellulases [i.e., endo-1,4-ß-D-glucanase (240 U), exo-1,4-ß-D-glucanase (180 U), and ß-glucosidase (320 U)] for 5 h of incubation at 75°C. The reducing sugar slurry obtained from the saccharified biomass was then added to a fermentation medium for bioethanol production, and a maximum of 11.82% of production was obtained at 30°C, 72 h, and 180 rpm using a 2.5% 24 h old Saccharomyces cerevisiae seed culture. The current study revealed that the levulinic-based deep eutectic solvent exhibited remarkable delignification, which led to the efficient enzymatic hydrolysis of sawdust and hence bioethanol production. Furthermore, it will prospect new avenues in bioethanol production using a deep eutectic solvent. Deep eutectic solvent overcame the issues posed by ionic liquids: toxicity, expensive and complex preparation, and non-biodegradability.

11.
Appl Biochem Biotechnol ; 194(10): 4946-4958, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35674923

RESUMO

Corncob as an abundant and low-cost waste resource has received increasing attention to produce value-added chemicals, it is rich in xylan and regarded as the most preferable feedstock for preparing high value added xylooligosaccharides. The use of xylooligosaccharides as core products can cut costs and improve the economic efficiency in biorefinery. In this study, maleic acid, as a non-toxic and edible acidic catalyst, was employed to pretreat corncob and produce xylooligosaccharides. Firstly, the response surface methodology experimental procedure was employed to maximize the yield of the xylooligosaccharides; a yield of 52.9% (w/v) was achieved with 0.5% maleic acid (w/v) at 155 °C for 26 min. In addition, maleic acid pretreatment was also beneficial to enhance the enzymatic hydrolysis efficiency, resulting in an enzymatic glucose yield of 85.4% (w/v) with a total of 10% solids loading. Finally, a total of 160 g of xylooligosaccharides and 275 g glucose could be produced from 1000 g corncob starting from the maleic acid pretreatment. Overall, a cascade processing for converting corncob to xylooligosaccharides and glucose by sequential maleic acid pretreatment and enzymatic hydrolysis was successfully designed for the corncob wastes utilization.


Assuntos
Xilanos , Zea mays , Glucose , Glucuronatos , Hidrólise , Maleatos , Oligossacarídeos
12.
Front Nutr ; 9: 909283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619949

RESUMO

Xylooligosaccharides (XOS) are functional feed additives that are attracting growing commercial interest owing to their excellent ability to modulate the composition of the gut microbiota. The acid hydrolysis-based processing of xylan-containing materials has been proposed to represent a cost-effective approach to XOS preparation, with organic acids being preferable in this context. As such, in the present study, maleic acid was selected as a mild, edible organic acid for use in the hydrolysis of xylan to produce XOS. A response surface methodology (RSM) approach with a central composite design was employed to optimize maleic acid-mediated XOS production, resulting in a yield of 50.3% following a 15 min treatment with 0.08% maleic acid at 168°C. Under these conditions, the desired XOS degree of polymerization (2-3) was successfully achieved, demonstrating the viability of this using a low acid dose and a high reaction temperature to expedite the production of desired functional products. Moreover, as maleic acid is a relatively stable carboxylic acid, it has the potential to be recycled. These results suggest that dilute maleic acid-based thermal treatment of corncob-derived xylan can achieve satisfactory XOS yields, highlighting a promising and cost-effective approach to XOS production.

13.
Front Bioeng Biotechnol ; 9: 658159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777922

RESUMO

Depleting supplies of fossil fuel, regular price hikes of gasoline and environmental deterioration have necessitated the search for economic and eco-benign alternatives of gasoline like lignocellulosic biomass. However, pre-treatment of such biomass results in development of some phenolic compounds which later hinder the depolymerisation of biomass by cellulases and seriously affect the cost effectiveness of the process. Dephenolification of biomass hydrolysate is well cited in literature. However, elimination of phenolic compounds from pretreated solid biomass is not well studied. The present study was aimed to optimize dephenoliphication of wheat straw using various alkalis i.e., Ca(OH)2 and NH3; acids i.e., H2O2, H2SO4, and H3PO4; combinations of NH3+ H3PO4 and H3PO4+ H2O2 at pilot scale to increase enzymatic saccharification yield. Among all the pretreatment strategies used, maximum reduction in phenolic content was observed as 66 mg Gallic Acid Equivalent/gram Dry Weight (GAE/g DW), compared to control having 210 mg GAE/g DW using 5% (v/v) combination of NH3+H3PO4. Upon subsequent saccharification of dephenoliphied substrate, the hydrolysis yield was recorded as 46.88%. Optimized conditions such as using 1%+5% concentration of NH3+ H3PO4, for 30 min at 110°C temperature reduced total phenolic content (TPC) to 48 mg GAE/g DW. This reduction in phenolic content helped cellulases to act more proficiently on the substrate and saccharification yield of 55.06% was obtained. The findings will result in less utilization of cellulases to get increased yield of saccharides by hydrolyzing wheat straw, thus, making the process economical. Furthermore, pilot scale investigations of current study will help in upgrading the novel process to industrial scale.

14.
Biotechnol Biofuels ; 14(1): 35, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531058

RESUMO

BACKGROUND: Pretreatment is the key step for utilizing lignocellulosic biomass, which can extract cellulose from lignin and disrupt its recalcitrant crystalline structure to allow much more effective enzymatic hydrolysis; and organic acids pretreatment with dual benefic for generating xylooligosaccharides and boosting enzymatic hydrolysis has been widely used in adding values to lignocellulose materials. In this work, furoic acid, a novel recyclable organic acid as catalyst, was employed to pretreat sugarcane bagasse to recover the xylooligosaccharides fraction from hemicellulose and boost the subsequent cellulose saccharification. RESULTS: The FA-assisted hydrolysis of sugarcane bagasse using 3% furoic acid at 170 °C for 15 min resulted in the highest xylooligosaccharides yield of 45.6%; subsequently, 83.1 g/L of glucose was harvested by a fed-batch operation with a solid loading of 15%. Overall, a total of 120 g of xylooligosaccharides and 335 g glucose could be collected from 1000 g sugarcane bagasse starting from the furoic acid pretreatment. Furthermore, furoic acid can be easily recovered by cooling crystallization. CONCLUSION: This work put forward a novel furoic acid pretreatment method to convert sugarcane bagasse into xylooligosaccharides and glucose, which provides a strategy that the sugar and nutraceutical industries can be used to reduce the production cost. The developed process showed that the yields of xylooligosaccharides and byproducts were controllable by shortening the reaction time; meanwhile, the recyclability of furoic acid also can potentially reduce the pretreatment cost and potentially replace the traditional mineral acids pretreatment.

15.
Bioresour Technol ; 325: 124698, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33465645

RESUMO

This study aims to valorize wheat straw for xylose and glucose recovery using maleic acid in the pretreatment. The process conditions of maleic acid hydrolysis of wheat straw for xylose recovery were optimized by response surface methodology, through which the maximum xylose recovery of 77.12% versus minimum furfural yield of 1.61% were achieved using 70 g/L solid-to-liquid ratio and 0.1 mol/L maleic acid for 40 min at 150 °C. Moreover, 88.58% cellulose conversion was achieved by enzymatic hydrolysis of maleic acid-pretreated wheat straw. Results showed that maleic acid was an effective pretreatment solvent for sugars recovery: 19.88 g xylose and 30.89 g glucose were respectively obtained from 100 g wheat straw due to acidic and enzymatic hydrolysis, with only 0.37 g furfural produced. This study provides a strategy for hydrolyzing wheat straw to produce fermentable sugars with low amount of degradation product.


Assuntos
Glucose , Xilose , Fermentação , Hidrólise , Maleatos
16.
Front Bioeng Biotechnol ; 9: 814246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155413

RESUMO

Supplementing commercial xylanase and cellulase with selected debranching enzymes only resulted in slight enhancement of the enzymatic hydrolysis of wheat bran autohydrolysis residues (WBAR) which was obtained at 160°C over a 30-min period of autohdyrolysis, while a blend of enzymes from Aspergillus niger and Eupenicillium parvum achieved synergistic efficacy in this context. Using an equal mixture blend of these enzymes at a 0.5% (w/w) enzyme loading dosage with the addition of ferulic acid esterase (1 U/g substrate), the obtained hydrolysis yields were desirable, including 84.98% of glucose, 84.74% of xylose, 80.24% of arabinose, and 80.86% of ferulic acid. Following further separation using an HP-20 resin, the final ferulic acid recovery levels were as high as 62.5% of the esterified ferulic acid present within the initial WBAR input. Together, these data suggest that a combination of autohydrolysis and enzymatic hydrolysis using crude enzyme blends can efficiently achieve wheat bran enzymatic saccharification and associated ferulic acid release.

17.
Bioresour Technol ; 207: 1-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26868149

RESUMO

Two separate temperature and time ranges were respectively conducted for optimizing release of p-coumaric acid and enzymatic saccharification of sorghum pith by NaOH pretreatment using response surface methodology. Two desirable pretreatment conditions were selected as follows: 37°C, 2% NaOH and 12h, and 100°C, 1.75% NaOH and 37min in the low and high temperature ranges, respectively. Under these conditions, the enzymatic glucose yields were 85.6% and 90.4% respectively, whereas p-coumaric acid yields were 95.1% and 98.1% respectively. The final recovery of esterified p-coumaric acid reached 82.8% and 87.4% respectively after further separation with HP-20 resin. Interestingly, strong linear correlations exist between p-coumaric acid release with glucan saccharification yield and lignin dissolution. These results indicate that sorghum pith could be an attractive source for natural p-coumaric acid and efficient release of p-coumaric acid and enzymatic saccharification of sorghum pith can be achieved by mild NaOH pretreatment.


Assuntos
Álcalis/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Ácidos Cumáricos/isolamento & purificação , Sorghum/química , Resíduos , beta-Glucosidase/metabolismo , Hidrólise , Lignina/isolamento & purificação , Modelos Teóricos , Propionatos , Reprodutibilidade dos Testes , Hidróxido de Sódio/farmacologia , Sorghum/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...